The subject of this book is analysis on Wiener space by means of Dirichlet forms and Malliavin calculus. There are already several literature on this topic, but this book has some different viewpoints. First the authors review the theory of Dirichlet forms, but they observe only functional analytic, potential theoretical and algebraic properties. They do not mention the relation with Markov processes or stochastic calculus as discussed in usual books (e.g. Fukushima’s book). Even on analytic properties, instead of mentioning the Beuring-Deny formula, they discuss “carré du champ” operators introduced by Meyer and Bakry very carefully. Although they discuss when this “carré du champ” operator exists in general situation, the conditions they gave are rather hard to verify, and so they verify them in the case of Ornstein-Uhlenbeck operator in Wiener space later. (It should be noticed that one can easily show the existence of “carré du champ” operator in this case by using Shigekawa’s H-derivative.) In the part on Malliavin calculus, the authors mainly discuss the absolute continuity of the probability law of Wiener functionals. The Dirichlet form corresponds to the first derivative only, and so it is not easy to consider higher order derivatives in this framework. This is the reason why they discuss only the first step of Malliavin calculus. On the other hand, they succeeded to deal with some delicate problems (the absolute continuity of the probability law of the solution to stochastic differential equations with Lipschitz continuous coefficients, the domain of stochastic integrals (Itô-Ramer-Skorokhod integrals), etc.). This book focuses on the abstract structure of Dirichlet forms and Malliavin calculus rather than their applications. However, the authors give a lot of exercises and references and they may help the reader to study other topics which are not discussed in this book. Zentralblatt Math, Reviewer: S.Kusuoka (Hongo)
Die bei uns gelisteten Preise basieren auf Angaben der gelisteten Händler zum Zeitpunkt unserer Datenabfrage. Diese erfolgt einmal täglich. Von diesem Zeitpunkt bis jetzt können sich die Preise bei den einzelnen Händlern jedoch geändert haben. Bitte prüfen sie auf der Zielseite die endgültigen Preise.
Die Sortierung auf unserer Seite erfolgt nach dem besten Preis oder nach bester Relevanz für Suchbegriffe (je nach Auswahl).
Für manche Artikel bekommen wir beim Kauf über die verlinkte Seite eine Provision gezahlt. Ob es eine Provision gibt und wie hoch diese ausfällt, hat keinen Einfluß auf die Suchergebnisse oder deren Sortierung.
Unser Preisvergleich listet nicht alle Onlineshops. Möglicherweise gibt es auf anderen bei uns nicht gelisteten Shops günstigere Preise oder eine andere Auswahl an Angeboten.
Versandkosten sind in den angezeigten Preisen und der Sortierung nicht inkludiert.
* - Angaben ohne Gewähr. Preise und Versandkosten können sich zwischenzeitlich geändert haben. Bitte prüfen sie vor dem Kauf auf der jeweiligen Seite, ob die Preise sowie Versandkosten noch aktuell sind.