MinSum- und MinMax-Optimierung für zwei Standorte. Darstellung, Erweiterung und Realisierung der Algorithmen von Z. Drezner als interaktive Java-Appli
Masterarbeit aus dem Jahr 2017 im Fachbereich Informatik - Angewandte Informatik, Note: 3,0, FernUniversität Hagen (Institut für kooperative Systeme), Veranstaltung: Seminar Algorithmische Geometrie - Praktische Informatik, Sprache: Deutsch, Abstract: Aufgabe ist die Lösung des sog. ¿Twocenter-Problems¿, welches exakt durch den sog. ¿MinSum- Algorithmus¿ bzw. ¿MinMax-Algorithmus¿ für die MinMax-Probleme lösbar ist. Das Twocenter- Problem lässt sich auf viele konkrete Sachverhalte anwenden. Speziell auch auf die eingangs aufgeworfene Fragestellung bei der Durchbohrung von Leiterplatten. Allerdings sind einige praktische Formulierungen des Twocenter-Problems griffiger. Diese sollen im Anschluss als ¿Informelle Problemstellung¿ erörtert werden. Danach werde ich zu einer exakten mathematischen Fassung dieser Problemstellung kommen. Der von [Drezner(1984a)] vorgeschlagene MinSum-Algorithmus soll vorgestellt, hergeleitet und bewiesen werden. Alle notwendigen mathematischen Hilfsmittel sollen ausgebreitet werden. Ebenfalls soll diese Erörterung für den von [Drezner(1984a)] ebenfalls vorgeschlagenen MinMax-Algorithmus erfolgen. Außerdem soll es eine Implementierung als Java-Applikation mit grafischer Benutzeroberfläche geben. Punkte sollen anklickbar, löschbar und verschiebbar sein, sowie das Ergebnis automatisch aktualisiert werden. Einige Ein- und Ausgaben der Implementierung werden am Ende der Erörterung beispielhaft gegeben.
Die bei uns gelisteten Preise basieren auf Angaben der gelisteten Händler zum Zeitpunkt unserer Datenabfrage. Diese erfolgt einmal täglich. Von diesem Zeitpunkt bis jetzt können sich die Preise bei den einzelnen Händlern jedoch geändert haben. Bitte prüfen sie auf der Zielseite die endgültigen Preise.
Die Sortierung auf unserer Seite erfolgt nach dem besten Preis oder nach bester Relevanz für Suchbegriffe (je nach Auswahl).
Für manche Artikel bekommen wir beim Kauf über die verlinkte Seite eine Provision gezahlt. Ob es eine Provision gibt und wie hoch diese ausfällt, hat keinen Einfluß auf die Suchergebnisse oder deren Sortierung.
Unser Preisvergleich listet nicht alle Onlineshops. Möglicherweise gibt es auf anderen bei uns nicht gelisteten Shops günstigere Preise oder eine andere Auswahl an Angeboten.
Versandkosten sind in den angezeigten Preisen und der Sortierung nicht inkludiert.
* - Angaben ohne Gewähr. Preise und Versandkosten können sich zwischenzeitlich geändert haben. Bitte prüfen sie vor dem Kauf auf der jeweiligen Seite, ob die Preise sowie Versandkosten noch aktuell sind.