Alle Werkzeuge und Techniken für die praktische Arbeit mit LLMs - Das Handbuch für das intuitive Verständnis von LLMs: Mit zahlreichen Visualisierungen, die Konzepte schnell zugänglich machen - Themen sind die Sprachverarbeitung - Textklassifikation, Suche oder Cluster - und die Sprachgenerierung - vom Prompt Engineering bis zur Retrieval Augmented Generation (RAG) - Die Autoren haben mit ihren beliebten Blogs Millionen von Entwickler*innen geholfen, Machine Learning und KI zu verstehen Diese umfassende und anschauliche Einführung in die Welt der LLMs beschreibt sowohl konzeptionelle Grundlagen als auch konkrete Anwendungen und nützliche Tools. Tauchen Sie in das Innenleben von LLMs ein und erkunden Sie ihre Architekturen, Einsatzbereiche, Trainingsmethoden und Feintuning-Techniken. Mit seiner einzigartigen Mischung aus intuitiv verständlichen Illustrationen und praxisbezogenen Erläuterungen ist dieses Buch die ideale Ausgangsbasis für alle, die die Möglichkeiten von KI-Systemen voll ausschöpfen möchten. Sie lernen, vortrainierte Transformer-LLMs von Hugging Face für Anwendungsfälle wie das Verfassen von Texten oder für Inhaltszusammenfassungen einzusetzen. Sie erfahren außerdem, wie Sie Suchsysteme erstellen und vorhandene Bibliotheken und vortrainierte Modelle für Textklassifikation, Suche und Clustering nutzen. - Verstehen Sie die Architektur von Transformer-basierten Sprachmodellen, die bei der Textgenerierung und -repräsentation hervorragende Ergebnisse liefern - Entwerfen Sie fortgeschrittene LLM-Pipelines, um Textdokumente zu clustern und die darin enthaltenen Themen zu erforschen - Erstellen Sie semantische Suchmaschinen, die über den Abgleich von Schlagwörtern hinausgehen und auf Methoden wie Dense Retrieval und Reranking basieren - Lernen Sie, wie Sie generative Modelle optimal einsetzen - vom Prompt Engineering bis hin zur Retrieval Augmented Generation (RAG) - Entwickeln Sie ein tieferes Verständnis dafür, wie LLMs trainiert und für spezifische Anwendungen optimiert werden, beispielsweise durch Feintuning generativer Modelle, Contrastive Fine-Tuning und In-Context-Learning
Die bei uns gelisteten Preise basieren auf Angaben der gelisteten Händler zum Zeitpunkt unserer Datenabfrage. Diese erfolgt einmal täglich. Von diesem Zeitpunkt bis jetzt können sich die Preise bei den einzelnen Händlern jedoch geändert haben. Bitte prüfen sie auf der Zielseite die endgültigen Preise.
Die Sortierung auf unserer Seite erfolgt nach dem besten Preis oder nach bester Relevanz für Suchbegriffe (je nach Auswahl).
Für manche Artikel bekommen wir beim Kauf über die verlinkte Seite eine Provision gezahlt. Ob es eine Provision gibt und wie hoch diese ausfällt, hat keinen Einfluß auf die Suchergebnisse oder deren Sortierung.
Unser Preisvergleich listet nicht alle Onlineshops. Möglicherweise gibt es auf anderen bei uns nicht gelisteten Shops günstigere Preise oder eine andere Auswahl an Angeboten.
Versandkosten sind in den angezeigten Preisen und der Sortierung nicht inkludiert.
* - Angaben ohne Gewähr. Preise und Versandkosten können sich zwischenzeitlich geändert haben. Bitte prüfen sie vor dem Kauf auf der jeweiligen Seite, ob die Preise sowie Versandkosten noch aktuell sind.